“Vibration-induced PM Noise in Oscillators and Studies of Correlation with Vibration Sensors”

National Institute of Standards & Technology (NIST), Boulder, CO, USA
Description of vibration equipment and PM noise measurement.

Primary Measurement Effects due to Motion of an Ideal Device Under Test (DUT):
- Path fluctuation
- Uniform motion
- Relativity under vibration
- Cable multipath instability and impedance mismatch

Calculation of $\Gamma = \langle y^2(f_v) \rangle^{1/2}$ per g

Measurements of PM noise of a low-vibe-sensitivity Qz under vibration:
- Sine-wave vibration, 20 – 2000 Hz
- Random-noise vibration, 10 – 200 Hz
- Scatter plots of phase-fluctuations vs. acceleration

Strategy for constructing ultra-low noise microwave reference oscillator with reduced acceleration sensitivity.
Vibration phase noise test bed

Vibration controller and amplifier, actuator, adaptor, and power converter
Vibration phase noise test bed

- 3-axis mounting of low-vibration-sensitivity quartz oscillator (~5x10^-11/g).
Path Fluctuations

Effects:
1. $\frac{\Delta L}{L}$ of signal path

\[
\frac{\Delta \nu_{rms}}{\nu_0} = G \cdot \frac{10}{\sqrt{2\pi \cdot 10^8}} \cdot \frac{1}{100} = G \cdot 7.3 \times 10^{-11}
\]

\[
|\Gamma| = \frac{7.3 \times 10^{-11}}{g_{rms}}, \quad @ f_{vibe} = 100Hz
\]
Uniform Motion

The detected frequency will be identical to the proper frequency of the oscillator and, to first order in the velocity, this does not depend on the velocity.
Acceleration Effect

Effects:
1. $\frac{\Delta L}{L}$ of signal path
2. 2nd order relative velocity
3. Relative acceleration

\[\Delta v_{DUT} \frac{v_{DUT}}{v_0} = -\frac{1}{2} \frac{v^2}{c^2} \]

\[2.4 \times 10^{-17} / g \text{ @ } f_{vibe} = 100\text{Hz}, \]
Signal Multipath Effect from Impedance Mismatch, Dielectric Distortion, etc.

\[V(t) = A \cos[\omega_0 t - \alpha] \]

\[\alpha = \tan^{-1}\left(\frac{(C_0 / \beta) \cos(pt_0 / 2)}{1 - (C_0 / \beta) \sin(pt_0 / 2)} \right) \]

\[|\Gamma| = \frac{1.46 \times 10^{-10}}{g_{rms}}, \]

in the worst case.

\(C_0 \) is an infinite series involving the coefficient of reflection \(\rho \). The quantity \(\alpha \) represents a lagging phase error that depends upon the modulation index \(\beta \). In the worst case, a reflected signal of equal strength makes \(\rho \) equal to one-half the phase lag of the reflected signal.
An oscillator that is vibrated generates carrier-frequency sidebands at $v_0 \pm f_v$ where f_v is the vibration frequency. Usually f_v is in the range $0 < f_v < 5 \text{ kHz}$.
Sinusoidal vibration produces spectral lines at $\pm f_v$ from the carrier, where f_v is the vibration frequency.

$$L'(f_v) = 20 \log \left(\frac{\Gamma \cdot A f_0}{2f_v} \right)$$

e.g., if $|\Gamma| = 1 \times 10^{-9}/g$ and $f_0 = 10$ MHz, then even if the oscillator is completely noise free at rest, the phase “noise” i.e., the spectral lines, due solely to a sine vibration level of 1g will be:

<table>
<thead>
<tr>
<th>Vibr. freq., f_v, in Hz</th>
<th>$L'(f_v)$, in dBC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-46</td>
</tr>
<tr>
<td>10</td>
<td>-66</td>
</tr>
<tr>
<td>100</td>
<td>-86</td>
</tr>
<tr>
<td>1,000</td>
<td>-106</td>
</tr>
<tr>
<td>10,000</td>
<td>-126</td>
</tr>
</tbody>
</table>
Random vibration’s contribution to phase noise is given by:

\[L(f) = 20 \log \left(\frac{\Gamma \cdot \bar{A} f_0}{2f} \right), \quad \text{where} \quad |\bar{A}| = \left[(2)(\text{PSD}) \right]^{\frac{1}{2}} \]

e.g., if \(|\Gamma| = 1 \times 10^{-9}/g \) and \(f_0 = 10 \text{ MHz} \), then even if the oscillator is completely noise free at rest, the phase “noise” i.e., the spectral lines, due solely to a vibration PSD = 0.1 g²/Hz will be:

<table>
<thead>
<tr>
<th>Offset freq., f, in Hz</th>
<th>(L'(f)), in dBC/Hz</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-53</td>
</tr>
<tr>
<td>10</td>
<td>-73</td>
</tr>
<tr>
<td>100</td>
<td>-93</td>
</tr>
<tr>
<td>1,000</td>
<td>-113</td>
</tr>
<tr>
<td>10,000</td>
<td>-133</td>
</tr>
</tbody>
</table>

Phase Deviation vs. X Axis Acceleration
10Hz to 200Hz Random Vibration
Uncompensated

\[\Phi_{pp} = 0.02 \text{ rad} \]
Phase Deviation vs. X Axis Acceleration
Random 10 to 200Hz

\[\Phi_{pp} = 0.0002 \text{ rad} \]
Phase Noise and Acceleration vs. Frequency

X Axis

Frequency (Hz)

Acceleration

Phase Noise

Phase Noise and Acceleration vs. Frequency

X Axis

Frequency (Hz)
X Axis

$\phi_{pp} = 0.0002\ \text{rad}$

$\phi_{pp} = 0.0035\ \text{rad}$

$\phi_{pp} = 0.00035\ \text{rad}$

$\phi_{pp} = 0.00035\ \text{rad}$

$\phi_{pp} = 0.00035\ \text{rad}$
Phase Deviation vs. Y Axis Acceleration
10Hz to 200Hz Random Vibration
Uncompensated

$\Phi_{pp} = 0.002 \text{ rad}$
Phase Deviation vs. Y Axis Acceleration
10Hz to 200Hz Random Vibration

$\Phi_{pp} = 0.002 \text{ rad}$
Y Axis

20Hz Dwell 1g

\[\Phi_{pp} = 0.002 \text{ rad} \]

40Hz Dwell 1g

\[\Phi_{pp} = 0.0008 \text{ rad} \]

80Hz Dwell 1g

\[\Phi_{pp} = 0.0005 \text{ rad} \]

100Hz Dwell 1g

\[\Phi_{pp} = 0.003 \text{ rad} \]

150Hz Dwell 1g

\[\Phi_{pp} = 0.0005 \text{ rad} \]

200 Hz Dwell 1g

\[\Phi_{pp} = 0.0004 \text{ rad} \]

500Hz Dwell 1g

\[\Phi_{pp} = 0.003 \text{ rad} \]

1kHz Dwell 1g

\[\Phi_{pp} = 0.0003 \text{ rad} \]

2kHz Dwell 1g

\[\Phi_{pp} = 0.0005 \text{ rad} \]
Phase Deviation vs. Z Axis Acceleration
10Hz to 200Hz Random Vibration
Uncompensated

\[\Phi_{pp} = 0.02 \text{ rad} \]
Phase Deviation vs. Z Axis Acceleration
10Hz to 200Hz Random

$\Phi_{pp} = 0.0015$ rad
Spectral Densities, Ch. 0 and Ch. 3, at the 95% confidence interval

Log Frequency

Spectral Density

-160
-140
-120
-100
-80
-60
-40
-20
0

PSD Ch 0: Phase Detector
PSD Ch 3: Z-Axis Accelerometer
Cross-Spectral Density
Phase Noise and Acceleration vs. Frequency

Z Axis

Frequency (Hz)

Acceleration

Phase Noise

Frequency (Hz)
Z Axis
Strategy for constructing ultra-low noise microwave reference oscillator with reduced acceleration sensitivity.

While the oscillator is under vibration, an estimate of a complex-conjugate (same amplitude, opposite phase) signal will be generated from accelerometer signals and used to modulate the oscillator’s output phase in such a way as to suppress or cancel the induced sidebands. One-axis cancellation is shown for simplicity.
Conclusion

- State-of-art phase noise measurements plus vibration test facility.

The End

National Institute of Standards & Technology (NIST), Boulder, CO, USA
Conclusion

- State-of-art phase noise measurements plus vibration test facility.

Low-noise Oscillator w/ Active Vibration

Vibration-Induced Phase Noise
Nominally $5 \times 10^{-10}/g$ and $f_0 = 100$ MHz
Low-noise Oscillator w/Vibration

aPROPOS Performance Goals at 10 GHz
Nominal 1g random vibration with uniform PSD, 0.05 g²/Hz
Vibration-induced PM Noise in Oscillators and Studies of Correlation with Vibration Sensors

National Institute of Standards & Technology (NIST), Boulder, CO, USA
The functions from accelerometers are time-domain, asymmetric signals that contain phase information in a distribution of frequencies that do not necessarily have harmonic relationships.

Swept-sine tests of g-sensitivity are informative, but not completely satisfactory, because harmonics of f_v have phases that need to be suppressed. The g-sensitivity vs. $N \times f_v$ must include the phase of harmonics, so a superior test is *swept-triangle* at low f_v to account for harmonic phase-matching. Ideally, *random noise* should be used to characterize all harmonic and anharmonic phases in the suppression.

We must resort to *adaptive transfer functions* in the feed-forward suppression (FFS).
Phase II Goal for Low-noise Oscillator w/Vibration

aPROPOS Performance Goals at 10 GHz
Nominal 1g random vibration with uniform PSD, 0.05 g^2/Hz
Phase II Goal for Low-noise Oscillator w/Vibration

aPROPOS Performance Goals at 10 GHz
Nominal 1g random vibration with uniform PSD, 0.05 g^2/Hz
Random Vibration-Induced Phase Noise

Phase noise under vibration is for $\Gamma = 1 \times 10^{-9}$ per g and $f = 10$ MHz

$\mathbf{L}(f)$ under the random vibration shown

$\mathbf{L}(f)$ without vibration

45 dB

Typical aircraft random vibration envelope
While the oscillator is under vibration, an estimate of a complex-conjugate (same amplitude, opposite phase) signal will be generated from accelerometer signals and used to modulate the oscillator’s output phase in such a way as to suppress or cancel the induced sidebands. One-axis cancellation is shown for simplicity.
Phase Deviation vs. Y Axis Acceleration
10Hz to 200Hz Random Vibration

Phase Deviation (Rad)

Y Axis Acceleration (g)

Phase Deviation (Rad)

Z Axis Acceleration (g)
Qz Osc w/ Vibration Suppression: Phase Dev. vs. Z-accel.
Qz Osc w/ Vibration Suppression: Phase Dev. vs. Y-accel.